By Stephen C. Meyer
"In 1985, I attended a conference that brought a fascinating problem in origin-of-life biology to my attention—the problem of explaining how the information necessary to produce the first living cell arose. At the time, I was working as a geophysicist doing digital signal processing, a form of information analysis and technology. A year later, I enrolled in graduate school at the University of Cambridge, where I eventually completed a Ph.D. in the philosophy of science after doing interdisciplinary research on the scientific and methodological issues in origin-of-life biology. In the ensuing years, I continued to study the problem of the origin of life and have authored peer-reviewed and peer-edited scientific articles on the topic of biological origins, as well as co-authoring a peer-reviewed biology textbook. Last year, after having researched the subject for more than two decades, I published Signature in the Cell, which provides an extensive evaluation of the principal competing theories of the origin of biological information and the related question of the origin of life. Since its completion, the book has been endorsed by prominent scientists including Philip Skell, a member of the National Academy of Sciences; Scott Turner, an evolutionary biologist at the State University of New York; and Professor Norman Nevin, one of Britain’s leading geneticists.
Nevertheless, in his recent review on the Biologos website, Prof. Darrel Falk characterizes me as merely a well-meaning, but ultimately unqualified, philosopher and religious believer who lacks the scientific expertise to evaluate origin-of-life research and who, in any case, has overlooked the promise of recent pre-biotic simulation experiments. On the basis of two such experiments, Falk suggests I have jumped prematurely to the conclusion that pre-biotic chemistry cannot account for the origin of life. Yet neither of the scientific experiments he cites provides evidence that refutes the argument of my book or solves the central mystery that it addresses. Indeed, both experiments actually reinforce—if inadvertently—the main argument of Signature in the Cell.
The central argument of my book is that intelligent design—the activity of a conscious and rational deliberative agent—best explains the origin of the information necessary to produce the first living cell. I argue this because of two things that we know from our uniform and repeated experience, which following Charles Darwin I take to be the basis of all scientific reasoning about the past. First, intelligent agents have demonstrated the capacity to produce large amounts of functionally specified information (especially in a digital form). Second, no undirected chemical process has demonstrated this power. Hence, intelligent design provides the best—most causally adequate—explanation for the origin of the information necessary to produce the first life from simpler non-living chemicals. In other words, intelligent design is the only explanation that cites a cause known to have the capacity to produce the key effect in question.
Nowhere in his review does Falk refute this claim or provide another explanation for the origin of biological information. In order to do so Falk would need to show that some undirected material cause has demonstrated the power to produce functional biological information apart from the guidance or activity a designing mind. Neither Falk, nor anyone working in origin-of-life biology, has succeeded in doing this. Thus, Falk opts instead to make a mainly personal and procedural argument against my book by dismissing me as unqualified and insisting that it is “premature” to draw any negative conclusions about the adequacy of undirected chemical processes.
To support his claim that I rushed to judgment, Falk first cites a scientific study published last spring after my book was in press. The paper, authored by University of Manchester chemist John Sutherland and two colleagues, does partially address one of the many outstanding difficulties associated the RNA world, the most popular current theory about the origin of the first life.
Starting with a 3-carbon sugar (D-gylceraldehyde), and another molecule called 2-aminooxazole, Sutherland successfully synthesized a 5-carbon sugar in association with a base and a phosphate group. In other words, he produced a ribonucleotide. The scientific press justifiably heralded this as a breakthrough in pre-biotic chemistry because previously chemists had thought (as I noted in my book) that the conditions under which ribose and bases could be synthesized were starkly incompatible with each other.
Nevertheless, Sutherland’s work does not refute the central argument of my book
(More)